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1 Introduction

This is the final summary report on the work done as part of the ARRA-funded, MINDES: Data
Mining for Inverse Design SciDAC-e project [10]. The goal of this project was to apply data mining
techniques to data generated by the Center for Inverse Design [5], an Energy Frontier Research
Center (EFRC) of the Office of Science, US Department of Energy. This center is pursuing a
new approach to material science; rather than using the conventional direct approach (“Given the
structure, find the electronic properties”), they are using a “materials by inverse design” approach
(“Given the desired property, find the structure”). The specific target properties of interest include
general semiconductor optical and electrical properties.

The analysis work falls in the broad area of design of computer experiments [7], where an
ensemble of simulations is used to guide physical experiments and gain insights into the design
space which maps the inputs of the simulations to the output(s). As the simulations are often
computationally expensive, the ensemble must be carefully designed to obtain the greatest insights
into the physical phenomenon of interest using as few simulations as possible. A possible solution is
to consider an incremental approach where we analyze the input/output data from the simulations
that have already been run to identify the next set of simulations such that these new simulations
would add the greatest insights, by either refining the original data set in a region of interest, or
exploring new regions in the design space.

There were two aspects to the project - the investigation of analysis techniques likely to be
relevant to the task of identifying the inputs for the new simulations and the application of data
mining techniques to EFRC data. The original plan was to analyze a dataset of spinel materials
to determine if we could predict the formation enthalpy based on the properties of the elements
used in the material and the impurities that were added to create the semiconductor compounds.
At the request of the EFRC, we also considered another dataset of ternary compounds which had
been generated for some other purpose, but was now being analyzed to determine if it was possible
to identify the properties of the elements associated with band gap type 1 semiconductors.

2 Technical approach

For the two problems being addressed, the data can be written in the form of a table, where a row
represents a compound and the columns represent the features describing the compound. Associated
with each compound is an output, which, in the context of our problems, is the formation enthalpy
and the band gap type, respectively. The former is a continuous value and can be positive or
negative, while the latter is a discrete quantity, with integer values from 1 through 4.

Our technical approach for the analysis, which focused on the original problem of predicting
the formation enthalpy and was formulated before we obtained the data, considered two categories
of techniques to gain insights into the data. The first was to use dimension reduction methods,
where we try to determine features which are relevant to the output. The second is model building
using regression methods, where we build a model to predict the output. We next briefly describe
the methods we considered.

2.1 Dimension reduction

Dimension reduction is the process of transforming a high-dimensional dataset into a reduced
dimensional representation while preserving meaningful structures in the data. The dimension
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here refers to the number of features. These methods allow us to identify important features or
transform the data into another space where the we may be able to build better predictive models.

We considered several transform-based dimension reduction techniques: the linear Principal
Component Analysis (PCA) [11], that preserves the largest variance in the data while decorrelating
the transformed dataset, as well as four popular nonlinear dimension reduction (NLDR) techniques:
Isomap [17] preserves pairwise geodesic distances between data points; Locally Linear Embedding
(LLE) [14] preserves the reconstruction weights that are used to describe a data point as a linear
combination of its neighbors; Laplacian Eigenmaps [2] provides a low-dimensional representation
in which the weighted distances between a data point and other points within a neighborhood are
minimized; Local Tangent Space Alignment (LTSA) [21] constructs the global coordinate system by
aligning the tangent spaces generated by local PCA on the neighborhood of each data point. We also
investigated feature selection techniques, including Relief [13] and a correlation-based method [8].

Since many dimension reduction methods require that the reduced dimension of the data be
explicitly set, we investigated techniques to determine the intrinsic dimensionality of a dataset. For
PCA, we can exploit the eigenvalue spectrum, but for nonlinear methods, this idea only works in
rare cases where the data lie on a linear manifold [15]. Instead, we used the lack-of-fit measures that
measure the deviation between a certain objective in the input space and in the low-dimensional
space for Isomap and LLE [18, 15]. We also consider other classical approaches that do not require
the setting of input parameters or any explicit assumptions on the underlying model. These include
a robust version of the box-counting approach that determines the locally linear scale in the presence
of noise in the data [9, 3] and a statistical approach based on hypothesis tests and nearest-neighbor
information [19].

2.2 Building predictive models

In addition to dimension reduction techniques, we considered techniques to build predictive models
for discrete and continuous outputs for the band-gap type dataset and the formation enthalpy
dataset, respectively. We considered decision trees for discrete data and locally weighted regression
and regression trees for continuous output. We briefly describe these methods below.

Decision trees [4, 12] belong to the category of classification algorithms wherein the algorithm
learns a function that maps a data item into one of several pre-defined classes. Classification algo-
rithms typically have two phases. In the training phase, the algorithm is “trained” by presenting it
with a set of examples with known classification. In the test phase, the model created in the train-
ing phase is tested to determine how well it classifies known examples. If the results meet expected
accuracy, the model can be put into operation to classify examples with unknown classification.

A decision tree is a structure that is either a leaf, indicating a class, or a decision node that
specifies some test to be carried out on a feature (or a combination of features), with a branch and
sub-tree for each possible outcome of the test. The decision at each node of the tree is made to
reveal the structure in the data by dividing the feature space into regions where all data points are
primarily of one class.

Locally weighted regression (LWR) [6] combines local models that are fit to nearby data. Unlike
regression procedures using global models, which fit a single model to all data points, LWR fits a
different regresion model everywhere, weighting the data points by how close they are to the point of
interest. In addition to a regression function, LWR contains three critical parts: distance function,
weighting function and smoothing parameters. The distance function determines the data around
the point of interest that should be included in the fitting; the weighting function determines if
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observations near the point of interest contribute more to the prediction than points which are far
from it; and the smoothing parameter can be used to adjust the radius of the weighting function
and reduce cross validation error when fitting the data. With right choices of these three elements,
LWR can be quite successful at recovering the underlying nonliner regression function [1].

Regression trees are similar to decision trees, except the output (or class label) is continuous
rather than discrete. Thus, in the creation of a regression tree, instead of evaluating a split based
on how uniform the class labels are in each of the two groups resulting from a split, we consider
how similar the values are in each of the two groups resulting from the split.

3 Accomplishments

We next present a brief summary of our work - first, the results of our investigation into dimension
reduction methods, followed by the insights we obtained into the two datasets on formation enthalpy
and the band-gap type.

3.1 Performance of dimension reduction methods

We first considered the performance of different dimension reduction methods using several real
scientific datasets. Since we had experience with these datasets from past projects, we used them to
understand the different methods better so we could select an appropriate method for the analysis
of the two EFRC datasets. We briefly summarize our experiences below; more details are in a
technical report (Section 6, item 4).

In our comparison of dimension reduction techniques, we considered both data transformation
methods (linear and non-linear) and feature subset selection techniques. Using classification prob-
lems in five scientific datasets, we compared the classification error rates for the original dataset
with those obtained for the reduced representations resulting from the application of the dimension
reduction methods.

Our experiments indicate that, while the supervised feature subset selection techniques consis-
tently improve the classification of all datasets, the data transformation methods do not. However,
it is possible to use them to find properties of the data related to class labels. Our experiments
show that both PCA and Isomap are able to find representations that improve data classification.
Since both PCA and Isomap employ the eigenvectors corresponding to the largest eigenvalues, they
seem to perform better than methods which use the eigenvectors corresponding to the smallest
non-zero eigenvalues, such as LLE, Laplacian Eigenmaps and LTSA. Like PCA, when the data
tend to have strong linear properties, Isomap can identify these properties. Isomap can also cap-
ture some kind of nonlinear properties that PCA can not find. Although there exists applications
indicating that PCA is better than Isomap in terms of classification [20], our experiments indicate
a different conclusion. We also observe that the ability to interpret the reduced dimension made
by data tranformation methods is very limited.

A key finding of our experiments with dimension reduction techniques was the confirmation of
the fact that we need to have sufficient number of observations (that is, data points) relative to the
dimension of the problem. Specifically, the number of data points needed to accurately estimate
the true dimension of a D-dimensional data set should be at least 10

D
2 [16]. So, in practice, if

the sample size of a dataset is small, we should try reducing the number of features using domain
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information prior to determining its intrinsic dimensionality. As we shall see in Section 3.2, this
finding has important implications in the analysis of the two datasets from the EFRC.

3.2 Analysis of the EFRC datasets

In this section, we describe our work on the two EFRC datasets we analyzed as part of this project.
The first is the dataset on spinel materials, where we are interested in predicting the formation
enthalpy based on the properties of the atomic species that form the spinel and the impurity (either
a vacancy or a substitution) that is added to create the semiconductor. The second problem is
finding properties relevant to semiconductors with band-gap type 1 from a dataset which included
materials with band gap types 1-4.

3.2.1 Analysis of the formation enthalpy dataset

This dataset was composed of compounds derived from three spinel materials - Co2ZnO4, Rh2ZnO4,
Mn2CrO4. In this problem, given a material, say Co2ZnO4, new compounds are created by intro-
ducing an impurity, which can be either a vacancy at one of the locations in the spinel structure or
a substitution of one atom of an atomic species by another atomic species. These impurities can
be at different charge states with a different formation enthalpy associated with each charge state.

There are three types of data provided for this problem:

• Formation enthalpy values associated with each charge state of a compound created from a
spinel material by introducing an impurity.

• Structure data for the new compounds created from the three spinel materials. These provide
the locations of the different atoms in 3-D space. Several of these files were missing for the
compounds; so, the information on the structure was not used in the analysis.

• A file on material properties for 87 atomic species in the periodic table. These properties
include information such as the row and column in the periodic table; atomic number and
atomic weight; properties indicating the size, such as molar volume, single bond radius, and
double bond radius; various electronegativity scales, such as Mulliken-Jaffe, Pauling and
Allred-Rochow; density; boiling point; and melting point. Not all properties are available for
all atomic species.

We observe that, for this problem, the data are not in a tabular form, that is, one of the tasks
is to determine a representation of a compound for use in the analysis. This is challenging as we
need to have a single representation for both vacancies and substitutions. We considered several
possiblilities, and in consultation with the domain experts from the EFRC, focused on two:

• Periodic table (PT) dataset: In this smaller dataset, we consider just the periodic table
information for each species to determine if we can learn any patterns from the data. The
information for each species includes five quantities: its symbol, the number of atoms, and the
group, row, and column of the periodic table for the species. Each compound is represented
by five species: the species in the first location (Co in the case of Co2ZnO4); the impurity in
the first location (none, if the compound was created by means other than the introduction
of an impurity in the first location); the species in the second location (Zn in the case of
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Co2ZnO4); the impurity in the second location (none, if the compound was created by means
other than the introduction of an impurity in the second location); and the species in the
third location, which is Oxygen for a spinel.

• Materials property (MP) dataset: Generating this dataset is more challenging. After dis-
cussing possibilities with NREL scientists, we considered two options. First, based on a
suggestion by Haowei Peng (NREL), we considered the difference between the properties of
a species and the one it was replacing (in the case of a substitution). The property was
unchanged in the case of no impurity and set to 0.0 in case of a vacancy. However, this rep-
resentation had several drawbacks, so we focused on using the ratios of properties instead of
differences. Vacancies were represented by a property of zero and locations where the species
did not change were represented by property values of 1.

Before we summarize our analysis results, we make an important observation on the datasets for
this problem. As the data are generated using computationally expensive simulations, the number
of compounds for each of the three materials is quite small. For Co2ZnO4, the dataset has 53
compounds, while the dataset for Rh2ZnO4 has 52 compounds and Mn2CrO4 has 49 compounds.
The three datasets are analyzed separately as one of the questions we want to address is how
much of the analysis results from one material carry over to the other. Given the small size of the
datasets, we focused mainly on qualitative analysis as there were too few samples for a quantitative
analysis. We also realized that based on the small number of compounds and the large number of
features, our idea of using dimension reduction techniques or regression approaches would not have
been successful, a fact that was confirmed when we tried to apply these techniques.

For the PT data for the three materials, we first ordered the materials based on increasing
values of the formation enthalpy, and then tried to identify patterns that might lead to high or low
formation enthalpy values. We made several observations on the three materials, including:

1. When the compounds are listed in increasing value of f-enthalpy, examples with higher f-
enthalpy tend to have negative charge state, while those with lower enthalpy tend to have
positive charge states

2. Vacancies tend to result in higher formation enthalpy than substitutions.

The analysis of the properties dataset for the three spinel materials is challenging, especially as it
is unclear what is the best way to represent a compound in terms of the properties of its constituent
atomic species; the sample size is quite small and the design space not adequately sampled; not
all properties are available for all atomic species; and we need to represent compounds that differ
only in the charge state, but may have very different formation enthalpy values. All this indicates
that some information relevant to predicting the formation enthalpy may be missing. The crystal
structure of a compound may play a role here, though converting the locations of the different
atoms in 3-D space into relevant features is an open question.

Our attempts to find correlations between the features describing a compound and its forma-
tion enthalpy were inconclusive. We did find that, if we consider the compounds generated using
a substitution, the difference between the formation enthalpy of two compounds with charge state
0 appears to be close to the difference between the formation enthalpy of the corresponding com-
pounds in charge state -1. This may make it possible to predict one given the other three. The
observation extends to other charge states as well, though there are too few examples to draw a
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conclusion. However, the observation is not universally true and it may be worth investigating
the compounds for which this is the case. In addition, the distance to the nearest neighbor for
each compound could be used to add additional sample points as appropriate, resulting in a more
complete coverage of the design space.

A detailed analysis of the three materials was communicated to the domain scientists and is
available in a technical report (Section 6, item 5).

3.2.2 Analysis of the band-gap type dataset

The dataset considered in this analysis is from computer simulations of ternary compounds. Given
the composition of a compound, that is, the three elements and their percentages in the compound,
the simulations calculate various quantities, and associate with each compound a band gap type,
which can take values 1, 2, 3, or 4. The primary focus of the analysis was to determine which
properties of the elements are associated with band gap type 1 compounds. Any insights obtained
on the other band gap types in the course of the analysis were also deemed to be of interest.

The data were provided in the form of a table, consisting of 487 compounds (also referred to
as instances), each described by 83 features. Of these 83 features, 3 are the atomic species (i.e.,
elements) that make up the compound, referred to as “A”, “B”, and “C”; 3 are the compositions of
each species (the values are all less than 1.0 and sum to 1.0), referred to as “p”, “q”, and “r”; and 3
are other variables (“E1”, “E4”, and “sg”). “sg” is the space group, reflecting the crystal symmetry
and “E1” and “E4” are properties of the compound. Since our goal is to use the properties of the
atomic species to predict the gap type of the compound, we ignore features E1 and E4. Of the
remaining 74 features, 25 describe species A, 23 describe species B, and 26 describe species C.
We also observe that the dataset does not include the same set of properties for each of the three
species as some properties are unavailable for some elements.

Associated with each compound is the gaptype, which takes on values 1 through 4. Of the 487
instances, 76 are of gaptype 1 (15.6%), 100 of gaptype 2 (20.5%), 133 of gaptype 3 (27.3%), and 178
of gaptype 4 (36.6%). This is an unbalanced data set as the percentage of gap type 1 compounds is
quite small. This can make it difficult to ascertain if an observation is a physics insight or simply
the result of too few samples.

An analysis of the features indicated that, for a compound, each feature was generated by taking
the value of a property of the element and weighting it by its composition. This meant that if a
compound had a certain element, say Al, occurring at species “A”, at a composition of 0.25, then
the features corresponding to “A” for that compound would be the same as the “A” features for any
other compound which also had Al occurring at species “A” at a composition of 0.25. This results
in several repeating values, which can cause problems with some algorithms. It is also unclear if
the features thus generated could represent the characteristics that determine the band gap type
of a compound.

An initial exploratory analysis indicated that one compound had an incorrect space group - this
was removed from the dataset. There were two pairs of instances which were exact duplicates -
these were left in the dataset. We also found one inconsistency - there were five pairs of compounds
which had the same values of “A”, “B”, “C”, “p”, “q”, “r”, and space group, but different band gap
types (as well as different E1 and E4 values). Since “A”, “B”, “C”, “p”, “q”, and “r” determine
the features that are derived from the properties of the elements, this inconsistency indicates that
some important features, which determine how the properties of the elements in a compound are
related to the band gap type, are missing from the dataset.
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Given the small number of instances with band gap type 1, the inconsistency in the dataset, and
the approach used to generate the representation of each compound, we expect that a straightfor-
ward application of analysis tools is unlikely to yield insights into band gap type 1 compounds. This
was confirmed when we analyzed the data using parallel plots - we did not find any of the features
discriminating and there appeared to be not much difference between the compounds belonging to
the four gap types. Further, as expected, a decision tree classifier was not be able to automatically
classify compounds of band gap type 1 with a low error rate.

Given this, we considered three avenues for exploration - we reduced the number of features
by identifying those which were correlated; we derived alternate representations by taking ratios
and difference of properties that are available for all three species in a compound; and we tried to
determine if, using the new representations, we could identify parts of feature space where a large
percentage of points were likely to be of band gap type 1.

Our results indicated that we could not find a region of the space spanned by the original
dataset which had a high percentage of type 1 compounds. This agrees with our observation that
the original features are not very discriminating. However, if we remove the correlated features
and features that are available for only one or two of the three species, we find one region where
45% of the compounds are of type 1. When we use ratios or differences of the original scaled
or the unscaled properties, we obtain additional insights into regions with a greater than normal
percentage of type 1 compounds. The rules identifying these regions also indicate which features
are relevant to band gap type 1 compounds. As an example, the rule

BCRmelting_point < 0.581793 and ACRmolar_volume < 0.396468

returns 50 compounds, of which 28 (=56%) are of band gap type 1. The two variables in the rule
are the ratios of the melting points for species in locations “B” and “C” and the ratios of the molar
volume for species in locations “A” and “C”. Note that this is much higher than the 15% type 1
compounds in the full data set.

In this dataset, we also found that there is a correlation between the space group and the band
gap type. For example, space group 122 usually results in type 1 or 2 compounds, while space
group 198 leads to type 3 compounds and space group 2 favors type 4 compounds.

A detailed analysis of this dataset for all four band-gap types and the rules for each were
communicated to the domain scientists and is summarized in a technical report (Section 6, item 6).

4 Conclusions and ideas for future work

In this project, we considered data mining techniques in the context of the inverse design of materials
with desirable properties as semiconductors. The idea is to run an ensemble of computationally
expensive simulations to guide physical experiments and gain insights into the design space which
maps the inputs of the simulations to the output(s). To gain the greatest insights with a small
number of simulations, we consider an incremental approach where we analyze the input/output
data from the simulations that have already been run to intelligently identify the next set of
simulations

There were two parts to the project. The first was the investigation of analysis techniques likely
to be relevant to the task of identifying the inputs for new simulations and the second was to apply
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these techniques to real datasets from the Center for Inverse Design EFRC. We considered two
datasets - one related to the formation enthalpy and the other to the bad gap type.

Our investigation into dimension reduction techniques indicated that feature selection tech-
niques tended to perform better on practical problems and resulted in lower dimensional repre-
sentations that could be interpreted easily. However, our analysis also confirmed the fact that for
these techniques to be useful, we need to have a reasonably large number of data points relative to
the features that are used to represent each material.

The two datasets we analyzed were of relatively small size. In the case of the formation enthalpy
dataset, there were few compounds created from each of the three spinel materials, while in the
band gap type dataset, there were few examples of compounds with band gap type 1, even though
the full dataset was moderate in size. The small sizes of the data were to be expected as the EFRC
was in the early stages when this project was started. In light of the small sizes, we considered
more qualitative approaches to gain insights into the data, which were communicated to the EFRC
scientists.

Our overall conclusions from this study are:

• It is important to check the dataset for quality issues. Sometimes, we may find inconsistencies,
indicating that some critical information has not been included.

• The representation of the data is important. This should be refined iteratively in the process
of the analysis.

• If the datasets are small, as they are likely to be at the start of a design of experiments effort,
sophisticated techniques from data mining might not be the best first choice for analysis. This
is also true if the datasets are unbalanced because they were generated for some other analysis
and are now being re-analyzed to gain new insights. In such cases, we should use simpler
analysis techniques to see if we can gain qualitative insights into the data. In addition, we
can experiment with data mining techniques to determine if they can shed some light on the
data, for example, by indicating regions of feature space where there is a greater likelihood
of finding materials with the desired properties.

5 Project team
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6 Publications and presentations from this work

The following publications and presentations resulted from this work:

1. Poster Presentation: Ya Ju Fan and Chandrika Kamath. “A Comparison of Non-linear
Techniques for Dimension Reduction”. LLNL Postdoc Poster Symposium, June 1, 2011.
LLNL-POST-484645.
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2. Conference Presentation: Ya Ju Fan and Chandrika Kamath. “Intrinsic Dimensionality Us-
ing Non-linear Dimension Reduction Techniques”. Institute for Operations Research and
Management Sciences Annual Meeting, Charlotte, NC, November 13-16, 2011.

3. Conference Presentation: Ya Ju Fan and Chandrika Kamath. “Comparison of Dimension-
ality Reduction Techniques in Scientific Applications”. SIAM Conference on Uncertainty
Quantification, Raleigh, NC, April 2-5, 2012.

4. Technical Report: Ya Ju Fan and Chandrika Kamath. “On the Selection of Dimension
Reduction Techniques for Scientific Applications”. Accepted with minor revisions in Annals
of Information Systems. February 2012. LLNL-TR-531131.

5. Technical Report: Chandrika Kamath, “Analysis of the formation enthalpy dataset,” LLNL
Technical Report LLNL-TR-582974, September 2012.

6. Technical Report: Chandrika Kamath, “Analysis of the band-gap type dataset,” LLNL Tech-
nical Report LLNL-TR-577712, August 2012.

7. Book chapter: Chandrika Kamath and Ya Ju Fan, “ Data Mining for Materials Science and
Engineering,” in preparation for the forthcoming book, Informatics for Materials Science and
Engineering, edited by Prof. Krishna Rajan, to be published by Elsevier.
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